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Introduction

Thir paper describes the performance of a generalized reduced

gradient ('GRG) algorithm in solving geometric programs. The code used,

described in [5], is a general purpose nonlinear programming code, and

takes no advantage of the structure of geometric programs. First partial

derivatives of the objective and all constraint functions are required,

and these are computed by simple forward difference approximations. All

problem functions are expressed in power form, i.e., each term, t,, has

the form
a..t[ ci f xj 3

Problems Solved and Measures of Comparison

"lie geometric programs solved come from two sources: ! problems

given by D, nbo in [- and the 24 problems of -ijckaert and Martens in [].

Problem sizes are given in Table I below. The problems are good examples

of small, dpnre, highly nonlinear NLP's. The problems with sme negative

terms are generalized geometric programs with signomial constraints.
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TABLE 1

Problem Size

No. of No. of No. of
No. of No. of positive negative binding constraints

Problem variables constraints terms terms at optimality

DI 12 5 31 0 3
D2 5 6 15 8 2
D3 7 14 51 13 5

D4A,B 8 41 14 2 4
D4c 8 5 16 0 5
D5 8 6 14 5 6
D6 13 13 27 12 11
D7 16 19 40 21 --
D8A,B,C 7 4 18 0 A: 2, B: 3, C: 4

Rl 4 2 6 0 2
R2 3 1 9 0 1
R3 4 1 12 0 1
R4 11 3 30 0 3
R5 4 3 8 0 3
R6 8 7 12 0 7
R7 8 7 12 0 6
R8 7 7 48 0 2
R9 2 1 4 1 1
RIO 3 1 4 2 1
Rll 4 2 6 1 2
RI2 8 4 13 2 4
R13 8 6 14 5 6
R14 10 6 13 2 6
R15 10 7 12 3 7
R16 10 7 13 3 7
R17 11 9 14 5 9
RIB 13 9 18 4 9
R19 8 5 26 2 5
R21 10 7 16 7 7
R22 9 10 36 21 7
R24 10 10 23 13 8
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These may have local optima which are not global (such a point was

encountered in at least one problem).

Measures of Comparison

In comparing CRG with the code used by Dembo in [2] (one of the

better special purpose GP codes) two measures were available--the final

objective value obtained and the "standard time" required to achieve thaL

value. Standard time is the execution time for the problem divided by

the time to execute a timing program written by Colville ill. This

program inverts a 40 by 40 matrix 10 times. Use of standard time is

supposed to compensate for the effects of different computing environments,

e.g., machines, compilers, etc. To investigate this we solved [ problems

on the IBM 370/168 at Stanford University using three different PORTRAN
C.

compilers: the FORTRAN H compiler (OPT=2), the WATFIV compiler with the

CHECK option and the WATFTV compiler with the NOCHECK option. The results

appear in Table 2, which gives the times required by GR,! to solve four

problems (with minimal printed output) divided by the time required to

run the timing program. There is great variation in standard times between

the three compliers, with widest variation (by factors of from . to 101

between WATFIV CIE2'Ct and the FORTRAN H compilers. Evidently this

naive way of compensating for computing environment is inadequate.

To compare with the other published results, we chose the WATFTV

NOCHECK compiler, partly for convenience, partly because it gave the

median times. In all ,RG runs there was no printing of intermediate

results, but input data and final results were printed. In



TABLE 2

Standard Execution Times on Three FORTRAN Compilers

WATFIV WATFIV IBM FORTRAN H
Problem (CHECK) (NOCHB]YK) (OPT=2)

D4C 0.026 0.052 0.10)

D5 0.025 O.0 49 0.069

R2 0.005 0.012 0.038

R9 0.003 0.007 0.033

Colville Timing
Program

(IBM 370/168 41.80 16.83 3.91
c.p.u. seconds)
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problems with run tiraes less than 1 second, even this printing may

consume a large fraction of total time.

Comparison with the Rijckaert and Martens results is difficult,

since their starting points were cho 7en randomly, and were nrt published.

We chose our starting values so that odd-subscripted variables were

one-half their optimal value, and even-subscripted 7iariables were

three-halves their optimal value. The resulting point. are sihown in

Appendix A.

Computational Results

Table 3 shows the performance of GRG on the Dembo problems on

our first attempt. Problem 1A was too badly scaled to attempt solution,

and the code failed on Problems 3, 6 and 7. In Problems 3 and ,. 3RC

terminated prematurely when no decrease in the objective was achieved

while attempting to move in the direction of steepest descent, while

in Problem 7 the program terminated short of feasibility at a local

optimum of the Phase I objective.

Improved results were obtained by using an alternative pivoting

strategy in computing the basis inverbe. This strategy allowed pivoting"

on matrix elements smaller tlhm allowed by the previous strategy if the

alternative was en, ering a variable at a bound into ,,he I as-is. "Th is

avoided degenerate bases in some cases, and allowed solution of problem

3 and improved performance on number 5 (see Table h).
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Table 5 shows the effects of another modification to GRO.

The code uses the BFS variable metric method to minimize the reduced

objective. The original strategy was to update the approximation, H,

to the inverse hessian used by this method only when the line search

terminated in an unconstrained optimum. Otherwise it was reset to the

identity, and the search direction became the negative reduced gradient.

The new strategy used the BFS update at each iteration, except those

at which a basis change occurred. In the 5 problems of Table 5, this

new strategy was better in all problems but one, significantly better

in 3 problems.

Some Dembo problems (whose feasibility tolerance specified was

tighter than 10-4 ) were re-run using the default feasibility tolerance

(10- ) of the GRG code. As shown in Table 6, solutions wer obtuined

faster than with the specified tolerances (Table 3). This prompted

the use of a coarse tolerance to obtain an initial solution, followed

by a refinement using the specified tolerances. As shown in Table 7,

this strategy yielded a significant decrease ii, computational effort

for Problems 8A, 8B and 8C.

The performance of GRG on the Rijckaert-Martens problems is

shown in Table 8. Th1e column "Reported S.T." contains the best

standard time reported by Rijckaert and Martens [6] in a comparison

of eleven special purpose codes for geometric programming and one general

purpose code. GRG was generally slower than the best code and missed the

true optimum by one to two percent in Problems 13, 1 and 15. Otherwise,

GRG solved all these problems satisfactorily.
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:,ote that i s ,eorpetit-ve cr soupericr i, : -d-.rd i: ,

on the larger prod ,'rrs, 1.) tbru 'h. ._-ne r *,-Ire:.- .z1e ; v r e

on the order of 1 s, -ond. the pr;u T in,' ef -:o , *utpui. !v; 4:

may constzne rA, large £ractLori of rim UC :m 1, :t~s se. uod

previosly mentioned difficulties ww.h using -,ndard times, -::ply thr

these comparisons bs oe taken wit %. large r fi of salt

An ernhancement of twe g o -'oi, described in .' s :u-dr',t

extrapolation to compute initial estimates of basic variables prior to

solution of the nonlinear constraint equations in contrast to tangent

vector extrapolation L used in the runs described above. Sone of the

Demboand Eilickaert-Martens oroblems were used in tests to compare the

two extrapolation schemes. The results, displayed in Tables y and 10,

(which exhibit minor discrepancies with the results in Tables 5--; owing

to minor differences in tolerances and strategies used, show the

superiority of quadratic extrapolation for these problems.

Conclusions

Conclusions to be drawn from these experiments are:

1. "Standard time';" as defiied by Colville in ;l1. is an inadequate

means of compensating for different, computing environments w;hen

attempting to compare optimization algorithms. Improved procedures

are needed.

; ',representing the class of general purpose NLP algorithms, competes

well with special purpose geometric programming codes in solving

geometric programs. /1
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3. Certain modifications in solution strategy can strongly affect the

performance of GRG. Among these are: when the approximate hessian

is reset, the logic used in basis inversion to decide when a variable

at bound is to enter the basis, and the order of extrapolation

(linear or quadratic) used to obtain initial estimates of the

basic variables.

4. Certain parameter settings strongly affect GRG performance: in

particular, the tolerance used to determine which constraints are

binding, and the tolerance used to terminate the algorithm.

In closing, we note some things left undone but worth doing. GRG

could easily be made more convenient and efficient on geometric programs

by coding a special subroutine to compute first partial derivatives. This

would use the fact, that if the ith term in the program is

n a
ti = c II x.i

j=l

then

6t. a t
t ikti

Xk k

Hence, if the terms are stored when computing the constraint and objective

values, their partial derivatives are available with little additional

effort. This would reduce the time required to compute the gradient

of a function from the time required in these runs kntf, where tf is

the time required to evaluate the function and n is the number of

variables) to little more than tf. Special input subroutines could

16



be coded to enable the user to specify the problem by inputting only

(a) the constants c., (b) the exponent matrix a.. and (-e which

terms appear in which problem functions. Currently, ill problem functions

must be coded directly. These enhancements would transform Qhi into a

"special purpose" geometric programming code.

Some additional experiments appear useful. Teometric programs

can be transformed into exponential form by the change of variables 4

y.
X. = e

which transforms the ith term into

t. = c. expZ" a .)

Evaluation of t. then requires only one transcendental computation

rather than one for each fractional a... In addition, y. is a free'a .1

variable (if x. has no upper bound), and the problem functions become

convex if all ci are positive. Some problems should be solved using

both forms, to see which yields smallest solution times. In addition,

tests of GRG and some good geometric programming codes should be run on

the same computer, in order to remove the factor of standard times from

obscuring the comparisons.

17
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APPENDIX r

Starting Values of Variables Used for the

Hijckaert-Marteris Problems in GRh9 Puns

Problem No.

1 41. ,14,(,, 4.1, 2.1

2 51.'7 126. 9, 102.0 '

3 375.o, o.17, .3 .

4 1.25, 5.75, 1., 12;, 3-, i5, 2.14, 4.2, o.5, ., >.

5 21.5, (7.0, 3,.0, 1..

6 0.5, 5.3, 0.56, 1.1, 0.5, 1.05, 0.56, 1.5

7 0.5, 0.3, 0.56, 1.1, 0.5, 1.05, 0.56., 1.5

o.07, 1.5, 0.44, 17,, 1.57, 0.6, 0.77
0.41, (60.0

10 44.1, 1i.c, o.65

11 L.1r, 1-23, 0.28,

12 3.23, 1.32, 0.51, 1 .11, 0., 0.2, p .3

20.0, 20,+.0, 2557,0, 02, 141+-.O, 727.0, 143. , 594. o

14 1.4,, ,1 , 7.YS, (.,j, . , ), " 2 2 , _0

15 0., , ,0 .1., .1, 0.21, 0.7, 0.115 0.3<, 1.02i, 0.36, ..<'.', 0.o , 1.', '".1, 0.21, 0.09, 0.145

17 11 i .4, 1..) , -27)..

17 3.2, 11.21, ,.l, .'1 , . s, 0.2 , 5.0,

1.2, , .24, -. 17

19) 260. . .)5, "'000. , 1('.0( 0, lh .5.*, o74.e, (I.c,, 1'.O

21 900.'>, ), 0Cr, 4.., 09,,.0 1. .. . , , /.K. , 1 .9, 150.0

22 5.9, '.0, ,'.', ".1, f " . 0 .", ., . , 0.:>i K

24 0.14, 1.0, 0.), ('.05, 5;. 4, 0.11, ],;flC.C, '7. , 75s'., , .2

19 74.1,i)) 0-

P2,
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